

Towards Sub-10 nm Diameter III-V VNW Transistors

Wenjie Lu, Xin Zhao, Jesús A. del Alamo

Massachusetts Institute of Technology wenjie@mit.edu

Task/Theme: 2655.001

- Motivation
- Digital etch in III-V's
 - III-As (InGaAs)
 - III-Sb (InGaSb)
- InGaAs vertical nanowire MOSFETs
- Conclusions

Motivation – Why III-Vs?

del Alamo, Nature 2011

- Exceptional carrier transport properties
- Rich band structure engineering

Motivation – why vertical nanowire?

Vertical NW FET:

R

SRC

 \rightarrow uncouples footprint scaling

Top-down

Lam Research

1 nm

Leverage existing dry etch infrastructure

lutzi 2012

Advanced epitaxial growth technology

VNW RIE & digital etch – key enabling technologies

- RIE = $BCl_3/SiCl_4/Ar$ chemistry
- Digital Etch (DE) =

self-limiting O_2 plasma oxidation + H_2SO_4 or HCl oxide removal

• Radial etch rate = 1 nm/cycle

Zhao, IEDM 2013 Lu, EDL 2017

- Can reach sub-20 nm NW diameter
- Aspect ratio > 10
- Smooth sidewalls

8 nm InGaAs VNWs after 7 DE cycles:

10% HCl in DI water Yield = 0%

Water-based acid is problem:

Surface tension (mN/m):

- Water: 72
- Methanol: 22
- IPA: 23

Lu, EDL 2017

Difficult to reach 10 nm VNW diameter due to breakage

Alcohol-based Digital Etch - InGaAs

8 nm InGaAs VNWs after 7 DE cycles:

10% HCl in Dl water Yield = 0% 10% HCl in IPA Yield = **97%**

Alochol-based DE enables D < 10 nm

- About same etch rate as water-based DE → oxidation step sets etch rate
- Etch rate in H₂SO₄:methanol > HCI:IPA → different surface conditioning?

10% H₂SO₄ in methanol

Lu, EDL 2017

First demonstration of D=5 nm diameter InGaAs VNW (Aspect Ratio > 40)

D=5.5 nm VNW arrays with 90% yield

 $10\% H_2SO_4$ in methanol

10% HCl in IPA

D=10 nm, pitch=80 nm, 100% yield

- H₂SO₄:methanol yields 90% at D=6 nm!
- Viscosity matters: methanol (0.54 cP) vs. IPA (2.0 cP)
- Rinse in alcohol improves DE yield at D=12 nm but not below → oxide removal is most aggressive step

III-Sb very reactive: unable to perform digital etch on III-Sb

Lu, IEDM 2015

Lu, EDL 2017

- Conventional HCI treatment damages III-Sb vertical sidewalls
- Aqueous solution not suitable for vertical III-Sb

Alcohol-based HCI treatment does not damage III-Sb sidewall

Alcohol-based Digital Etch – InGaSb

First demonstration of InGaSb DE with radial etch rate = 1.0 nm/cycle

MIT pursuing top-down approach for VNW fabrication

- 5 DE cycles in H₂SO₄:methanol
- $Al_2O_3 = 2 \text{ nm} (EOT = 1 \text{ nm})$
- W gate, Mo ohmic contacts
- D = 20 40 nm

InGaAs VNW MOSFETs - Characteristics

- Minimum $S_{lin} = 70 \text{ mV/dec for } D = 40 \text{ nm}$
- D_{it} ≈ 3.9·10¹² eV⁻¹cm⁻²

- Novel digital etch scheme using alcohol-based etchants:
 - High mechanical yield at sub-10 nm diameter
 - Record VNW with D = 5 nm and AR > 40
 - First demonstration of DE on InGaSb
- InGaAs VNW MOSFETs fabricated using alcoholbased DE with excellent subthreshold characteristics